
# Phase-Aligned Clock Multiplier

#### **Features**

- 4-multiplier configuration
- Single phase-locked loop architecture
- Phase Alignment
- Low jitter, high accuracy outputs
- Output enable pin
- 3.3V operation
- 5V Tolerant input
- Internal loop filter
- 8-pin 150-mil SOIC package
- Commercial Temperature

#### **Benefits**

- 1/2x, 1x,  $\overline{1x}$ , 2x Ref
- 10 MHz to 166.67 MHz operating range (reference input from 20 MHz to 83.33 MHz)
- All outputs have a consistent phase relationship with each other and the reference input
- Meets critical timing requirements
- Enables design flexibility and lower power consumption
- Supports industry standard design platforms
- Allows flexibility on Reference input
- Alleviates the need for external components
- Industry standard packaging saves on board space
- Suitable for wide spectrum of applications





#### **Pinouts**

Figure 1. CY2300 - 8-pin SOIC - Top View

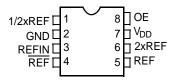



Table 1. Pin Definitions

| Pin | Signal <sup>[1]</sup> | Description                                  |
|-----|-----------------------|----------------------------------------------|
| 1   | 1/2xREF               | Clock output, 1/2x Reference                 |
| 2   | GND                   | Ground                                       |
| 3   | REFIN                 | Input Reference frequency, 5V tolerant input |
| 4   | REF                   | Clock output Reference                       |
| 5   | REF                   | Clock output Reference                       |
| 6   | 2xREF                 | Clock output, 2x Reference                   |
| 7   | VDD                   | 3.3V Supply                                  |
| 8   | OE                    | Output Enable (weak pull up)                 |

## **Functional Description**

The CY2300 is a 4-output 3.3V phase-aligned system clock designed to distribute high-speed clocks in PC, workstation, datacom, telecom, and other high-performance applications.

The part allows the user to obtain 1/2x, 1x, 1x and 2x REFIN output frequencies on respective output pins.

The part has an on-chip PLL which locks to an input clock presented on the REFIN pin. The input-to-output skew is guaranteed to be less than  $\pm 200$  ps, and output-to-output skew is guaranteed to be less than  $\pm 200$  ps.

Multiple CY2300 devices can accept the same input clock and distribute it in a system. In this case, the skew between the outputs of two devices is guaranteed to be less than 400 ps. The CY2300 is available in commercial temperature range.

# **Maximum Ratings**

| Supply Voltage to Ground Potentia                         | .l–0.5V to +7.0V               |
|-----------------------------------------------------------|--------------------------------|
| DC Input Voltage (Except Ref)                             | 0.5V to V <sub>DD</sub> + 0.5V |
| DC Input Voltage REF                                      | 0.5 to 7V                      |
| Storage Temperature                                       | 65°C to +150°C                 |
| Junction Temperature                                      | 150°C                          |
| Static Discharge Voltage (per MIL-STD-883, Method 3015) . | >2000V                         |

# **Operating Conditions**

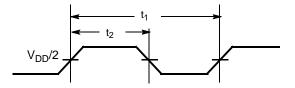
| Parameter       | Description                                                                                    | Min  | Max | Unit |
|-----------------|------------------------------------------------------------------------------------------------|------|-----|------|
| $V_{DD}$        | Supply Voltage                                                                                 | 3.0  | 3.6 | V    |
| T <sub>A</sub>  | Operating Temperature (Ambient Temperature)                                                    | 0    | 70  | °C   |
| C <sub>L</sub>  | Load Capacitance, Fout < 133.33 MHz                                                            |      | 18  | pF   |
|                 | Load Capacitance,133.33 MHz < Fout < 166.67 MHz                                                |      | 12  | pF   |
| C <sub>IN</sub> | Input Capacitance                                                                              |      | 7   | pF   |
| t <sub>PU</sub> | Power up time for all VDD's to reach minimum specified voltage (power ramps must be monotonic) | 0.05 | 50  | ms   |

#### Note

<sup>1.</sup> Weak pull down on all outputs.



# **Electrical Characteristics**


| Parameter       | Description                        |                                  |     | Max | Unit |  |
|-----------------|------------------------------------|----------------------------------|-----|-----|------|--|
| V <sub>IL</sub> | Input LOW Voltage                  |                                  |     | 0.8 | V    |  |
| V <sub>IH</sub> | Input HIGH Voltage                 |                                  | 2.0 |     | V    |  |
| I <sub>IL</sub> | Input LOW Current                  | $V_{IN} = 0V$                    |     | 100 | μΑ   |  |
| I <sub>IH</sub> | Input HIGH Current                 | $V_{IN} = V_{DD}$                |     | 50  | μΑ   |  |
| V <sub>OL</sub> | Output LOW Voltage <sup>[2]</sup>  | I <sub>OL</sub> = 8 mA           |     | 0.4 | V    |  |
| V <sub>OH</sub> | Output HIGH Voltage <sup>[2]</sup> | $I_{OH} = -8 \text{ mA}$         | 2.4 |     | V    |  |
| I <sub>DD</sub> | Supply Current                     | Unloaded outputs, REFIN = 66 MHz |     | 45  | mA   |  |
|                 |                                    | Unloaded outputs, REFIN = 33 MHz |     | 32  | mA   |  |
|                 |                                    | Unloaded outputs, REFIN = 20 MHz |     | 18  | mA   |  |

# **Switching Characteristics**

| Parameter         | Name                                                          | Test Conditions                                                      | Min | Тур. | Max    | Unit |
|-------------------|---------------------------------------------------------------|----------------------------------------------------------------------|-----|------|--------|------|
| 1/t <sub>1</sub>  | Output Frequency                                              | 18-pF load                                                           | 10  |      | 133.33 | MHz  |
|                   |                                                               | 12-pF load                                                           |     |      | 166.67 | MHz  |
|                   | Duty Cycle <sup>[3]</sup> = $t_2 \div t_1$                    | Measured at V <sub>DD</sub> /2                                       | 40  | 50   | 60     | %    |
| t <sub>3</sub>    | Rise Time <sup>[3]</sup>                                      | Measured between 0.8V and 2.0V                                       |     |      | 1.20   | ns   |
| t <sub>4</sub>    | Fall Time <sup>[3]</sup>                                      | Measured between 0.8V and 2.0V                                       |     |      | 1.20   | ns   |
| t <sub>5</sub>    | Output to Output Skew on rising edges <sup>[3]</sup>          | All outputs equally loaded<br>Measured at V <sub>DD</sub> /2         |     |      | 200    | ps   |
| t <sub>6</sub>    | Delay, REFIN Rising Edge to Output Rising Edge <sup>[3]</sup> | Measured at V <sub>DD</sub> /2 from REFIN to any output              |     |      | ±200   | ps   |
| t <sub>7</sub>    | Device to Device Skew <sup>[3]</sup>                          | Measured at V <sub>DD</sub> /2 on the 1/2xREF pin of devices (pin 1) |     |      | 400    | ps   |
| t <sub>J</sub>    | Period Jitter <sup>[3]</sup>                                  | Measured at Fout=133.33 MHz, loaded outputs, 18-pF load              |     |      | ±175   | ps   |
| t <sub>LOCK</sub> | PLL Lock Time <sup>[3]</sup>                                  | Stable power supply, valid clocks presented on REFIN                 |     |      | 1.0    | ms   |

# **Switching Waveforms**

Figure 2. Duty Cycle Timing



- Parameter is guaranteed by design and characterization. It is not 100% tested in production.
   All parameters are specified with equally loaded outputs.



# Switching Waveforms (continued)

Figure 3. All Outputs Rise/Fall Time

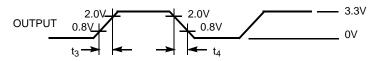



Figure 4. Output-Output Skew

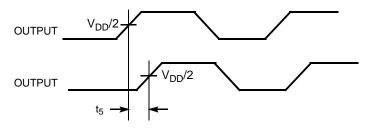



Figure 5. Input-Output Propagation Delay

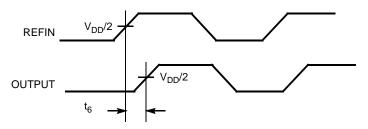
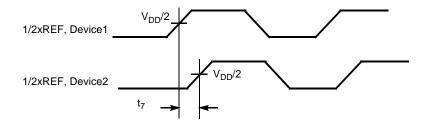
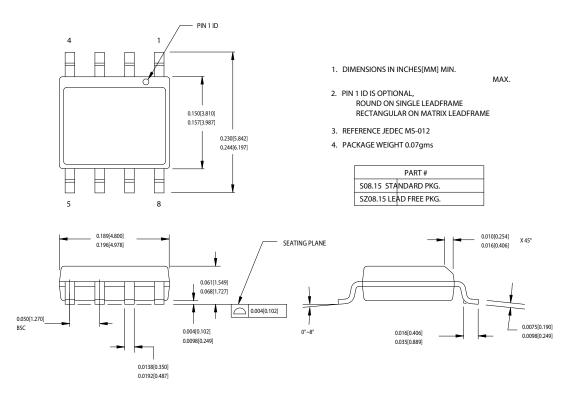




Figure 6. Device-Device Skew



## **Test Circuits**

# Test Circuit # 1 0.1 μF OUTPUTS CLK OUT CLOAD




# **Ordering Information**

| Ordering Code | Package Type                       | Operating Range |  |
|---------------|------------------------------------|-----------------|--|
| Pb-Free       |                                    |                 |  |
| CY2300SXC     | 8-pin 150-mil SOIC                 | Commercial      |  |
| CY2300SXCT    | 8-pin 150-mil SOIC - Tape and Reel | Commercial      |  |

# **Package Drawing and Dimensions**

Figure 7. 8-Pin (150-Mil) SOIC S8



51-85066-\*C



#### **Document History Page**

| REV. | ECN     | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                    |
|------|---------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **   | 110517  | SZV                | 01/07/02           | Change from Spec number: 38-01039 to 38-07252                                                                                                                                                                                                                                                                                                                            |
| *A   | 121854  | RBI                | 12/14/02           | Power up requirements added to Operating Conditions Information                                                                                                                                                                                                                                                                                                          |
| *B   | 246829  | RGL                | 08/02/04           | Added Lead Free Devices                                                                                                                                                                                                                                                                                                                                                  |
| *C   | 2568533 | AESA               | 09/23/08           | Updated template. Removed Selector Guide. Removed Operating Conditions for CY2300SI Industrial Temperature Devices. Removed Electrical Characteristics for CY2300SI Industrial Temperature Devices. Removed Switching Characteristics for CY2300SI Industrial Temperature Devices. Removed part number CY2300SC, CY2300SC, CY2300SI, CY2300SC, CY2300SXI and CY2300SXIT. |

#### Sales, Solutions, and Legal Information

#### **Worldwide Sales and Design Support**

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

| Products         |                      | PSoC Solutions        |                                   |
|------------------|----------------------|-----------------------|-----------------------------------|
| PSoC             | psoc.cypress.com     | General               | psoc.cypress.com/solutions        |
| Clocks & Buffers | clocks.cypress.com   | Low Power/Low Voltage | psoc.cypress.com/low-power        |
| Wireless         | wireless.cypress.com | Precision Analog      | psoc.cypress.com/precision-analog |
| Memories         | memory.cypress.com   | LCD Drive             | psoc.cypress.com/lcd-drive        |
| Image Sensors    | image.cypress.com    | CAN 2.0b              | psoc.cypress.com/can              |
|                  |                      | USB                   | psoc.cypress.com/usb              |

© Cypress Semiconductor Corporation, 2002-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-07252 Rev. \*C

Revised September 23, 2008

Page 6 of 6